
Autopia: An AI Collaborator for Live
Coding Music Performances

Norah Lorway Edward J. Powley
Academy of Music and Theatre Arts,

Falmouth University, UK
norah.lorway@falmouth.ac.uk

Games Academy,
Falmouth University, UK
edward.powley@falmouth.ac.uk

Arthur Wilson John A. Speakman
School of Communication,
Royal College of Art, UK
arthur.wilson789@hotmail.com

Games Academy,
Falmouth University, UK

john.andrew.speakman@falmouth.ac.uk

Matthew Jarvis
Academy of Music and Theatre Arts,

Falmouth University
mj196235@falmouth.ac.uk

ABSTRACT

Live coding is “the activity of writing (parts of) a program while it
runs” (Ward et al., 2004). One significant application of live coding is
in algorithmic music, where the performer modifies the code generating
the music in a live context. Utopia is a software tool for collaborative 1

live coding performances, allowing several performers (each with their
own laptop producing its own sound) to communicate and share code during
a performance. We have made an AI bot, Autopia , which can participate in
such performances, communicating with human performers through Utopia.
This form of human-AI collaboration allows us to explore the implications
of computational creativity from the perspective of live coding.

1 https://github.com/muellmusik/Utopia

BACKGROUND

LIVE CODING

Live coding is the activity of manipulating, interacting and writing
parts of a program whilst it runs (Ward et al., 2004). Whilst live coding
can be used in a variety of contexts, it is most commonly used to create
improvised computer music and visual art.

The diversity of musical and artistic output achievable with live coding
techniques has seen practitioners perform in many different settings,
including jazz bars, festivals and algoraves --- an event in which
performers use algorithms to create both music and visuals that can be
performed in the context of a rave. What began as a niche practice has
evolved into an international community of artists, programmers, and
researchers. With a rising interest in “creative coding”, live coding is
well positioned to find more mainstream appeal.

At algoraves, the screen of each performer is publicly projected to
create transparency between the performer and the audience. The Temporary
Organisation for the Permanence of Live Algorithm Programming (TOPLAP)
make it clear how important the publicity of the live coder’s screen is
in their manifesto draft: “Obscurantism is dangerous. Show us your
screens” (TOPLAP, 2010).

A central concern when performing live electronic music is how to present
“liveness” to the audience. The public screening of the performer’s code
at an algorave is often discussed in regards to this dynamic between the
performer and audience, where the level of risk involved in the
performance is made explicit. However, in the context of the system
described in this paper, we are more concerned with the effect that this
has on the performer themselves. Any performer at an algorave must be
prepared to share their code publicly, which inherently encourages a
mindset of collaboration and communal learning with live coders.
Additionally, the system we describe here puts the audience in the loop:
allowing for a type of real-time audience feedback mediated by
technology.

COLLABORATIVE LIVE CODING

Collaborative live coding takes its roots from laptop orchestra/ensemble
such as the Princeton Laptop Orchestra (PLOrk), an ensemble of computer
based instruments formed at Princeton University (Trueman, 2007). The
orchestra is a part of the music research community at the University and
is concerned with investigating ways in which the computer can be
integrated into conventional music making. PLOrk attempts to radically
transform those ideals (Trueman, 2007). Each PLOrk meta instrument
consists of a laptop, multi-channel hemispherical speaker and a variety
of control devices such as game controllers, sensors amongst others
(Trueman, 2007). The orchestra consists of 12-15 students and staff
ranging from musicians, computer scientists, engineers and others and
uses a combination of wireless networking and video in order to augment
the role of the conductor (Trueman, 2007).

UK based live coding ensembles such as the Birmingham Ensemble for
Electroacoustic Research (BEER) based at the University of Birmingham

have taken influence from ensembles such as PLOrk, but differ in terms of
the way they integrate communication and collaboration within the
ensemble. The ensemble was formed in 2011 by Scott Wilson and Norah
Lorway (Wilson et al., 2014) and began as an “exploration of the
potential of networked music system” for structured improvisation (Wilson
et al., 2014). The ensemble works primarily in the SuperCollider (SC)
language and the JITLib (Just in Time Library) classes in SC for basic 2 3

live coding functionality (Wilson et al., 2014). In terms of ensemble
communication and coordination, BEER uses Utopia (Wilson et al 2013), a
SuperCollider library for the creation of networked music application
which builds on the Republic quark and other such networked performance 4

systems in SuperCollider. Networked collaboration in live coding was
present from the inception of live coding where multiple machines are
clock-synchronized exchanging TCP/IP network messages (Collins et al.,
2003). Utopia aims to provide a more modular approach to networked
collaboration, featuring enhanced flexibility and security over other
existing solutions. It also provides an efficient way to synchronize
communication, code and data sharing over a local network. Unlike an
ensemble such as PLOrk which uses a human conductor such as in a
traditional orchestra, Utopia eliminates the need for this, allowing for
a more streamlined shared approach, where performers collectively make
musical decisions.

MOTIVATION

COMPUTATIONAL CREATIVITY

Using an AI bot within the context of a networked live coding
performance, is an idea that builds on a study undertaken by McLean and
Wiggins (2010), regarding live coding towards Computational Creativity.

Computational Creativity can be described as the aim of “endowing
machines with creative behaviours” (Pasquier et al., 2017), and systems
designed to do so can be put to practical uses from simulating and
automating existing human processes (creativity as it is), to discovering
novel outcomes (creativity as it could be) (Pasquier et al., 2017), which
could be valuable to the “scientific study of creativity” (Wiggins and
Forth, 2018). In the context of this proposal, we are concerned with the
latter.

The McLean and Wiggins (2010) study highlighted a view among live coding
practitioners that the code resulting from their practice contains an
element of the programmers style, and that “many feel they are not
encoding a particular piece, but how to make pieces in their own
particular manner” (McLean and Wiggins, 2010). This is a sentiment that
is echoed by Wiggins and Forth (2018) in the following statement:

“In a manner akin to the extended-mind theory of consciousness
(Clark and Chalmers, 1998), the live coder becomes attuned to
thinking with and through the medium of code and musical
abstractions, such that the software can be understood as becoming

2 https://github.com/supercollider/supercollider
3 http://doc.sccode.org/Overviews/JITLib.html
4 https://github.com/supercollider-quarks/Republic

part of the live coder’s cognition and creativity” (Wiggins and
Forth, 2018).

Through a process of “reflexive interaction” (Wiggins and Forth, 2018),
the human performer(s) and artificial agent each influence the actions of
the other. Entering into a “complex feedback loop” (Fiebrink and
Caramiaux, 2018), the artificial agent becomes an “imperfect mirror” of
the human performer(s) (Wiggins and Forth, 2018). We propose that through
the analysis of the artificial agent’s behaviours, we can extend our
understanding of what constitutes “valuable” musical output, while
challenging existing dogmatic approaches to live coding practice, and
techniques relating to the chosen programming language (SuperCollider),
where the formalisation and subsequent manipulation of syntax trees can
provide new insight to the language’s potential. Finally, it can provide
insight into the nature of creativity in general, by analysing emergent
behaviour from the bot.

Ultimately, our motivation can be summarised in the following quote:

“When the computer becomes a conversation partner, or a boat rocking
us in unexpected directions, we may find that the technologies we
build become more useful, more musical, more interesting than our
original conceptions” (Fiebrink and Caramiaux, 2018).

GAMIFICATION

There has been work on the use of gamification to facilitate creativity
(Kalinauskas, 2014). This generally draws upon the idea of flow
(Csikszentmihalyi, 2009) — the idea being that flow is important to
creativity, and that including some game-like elements in a creative
software or process can help to put users into this flow state. Taken
further, this leads to the idea of casual creators (Compton and Mateas,
2015) — creative tools whose interface is designed to promote a “playful,
powerful, and pleasurable” user experience (unlike more traditional
creative software where “powerful” would take precedence over the other
two). Aiming for playfulness in this context can also promote curiosity
and experimentation (Nelson et al., 2018).

Gamification has also been studied in the context of collective
creativity (Skarzauskiene and Kalinauskas, 2014). There are obvious
analogies between collaborating on creative tasks and playing a
multiplayer game, and the ideas used in the latter to foster
collaboration (or, in some cases, competition) may prove useful in the
former. For instance, the Female Interface Research Ensemble (FIRE) based
at the University of Birmingham, used Utopia and gamified collaborative
approaches in their algorave performance during The New Interfaces for
Musical Expression conference in 2014 in London, UK (Lorway et al.,
2014). As another example, Nilson (2007) proposes a number of game-like
exercises, many of them collaborative and/or competitive, to be used by
live coders in a practice context.

We propose taking a gamified collaborative creative environment and
adding a “bot” — an AI agent which interacts in the same way as a human
would. Bots in multiplayer games are often used as sparring partners for
offline practice matches, or to make up the numbers when not enough human
players are available for a game, however the fact that the play style of

bots is different to that of humans tends to change the dynamics of the
game. We are interested in studying whether the same is true for a
collaborative live coding performance — how does the introduction of one
or more bot performers change the dynamics of the performance?

THE BOT

In our previous paper on Autopia (Anonymous, 2019a) we proposed a bot
that participated in collaborative live coding performances in the same
way as a human performer. Such a system would incorporate two components:
a chatbot interface to the Utopia chat, and a genetic programming system
to generate SuperCollider code. The first of these remains as future
work, however we now have a functioning prototype of the second part.

The bot implements the Template-Based Object-Oriented Genetic-Programming
algorithm (Anonymous, 2019b) in C#, set to automatically construct
SuperCollider code from a series of pre-defined templates. These
templates are built using a genetic sequence, which is used to select the
initial template, usually a single line of SuperCollider code which has
been broken into its constituent parts, as strings. At present the
templates were hand-coded into the system and are fixed at runtime,
however future work may allow new templates to be extracted from other
performers’ code (shared over Utopia) whilst the system runs. The
variables used in these templates are filled in as values read directly
from the genetic algorithm or as variables created at an earlier point in
the automatic construction of the code.

This occurs in 3 phases: an initialization phase, which generates a
series of initial sine waves, a modification phase which alters those
waves and an execution phase which plays the generated sounds. Each of
these phases corresponds to its own library of templates. The generated
code is then injected into the SuperCollider IDE by simulating
keypresses, mimicking the appearance of a human live coder typing the
code in (albeit at super-human speed). A simulated press of Shift+Enter
then causes the generated code to be executed and produce sound.

Code can be generated in a batch and bred together, representing a
generation. A call can be made which takes two agents (genetic sequences
which may be used to generate SuperCollider code) and breed them together
using a simple genetic crossover algorithm to produce a new, offspring
agent. Using this technique, multiple generations of agents may be
generated which can be used, with selection, to breed against a fitness
function.

AUDIENCE COLLABORATION

Any evolutionary computing approach requires a fitness evaluation
function. In the current version of Autopia, the fitness evaluation comes
directly from the audience. We set up a web server along with a wi-fi
router to which the audience were invited to connect their smartphones.
Upon connecting, the audience member is given a simple slider ranging
from 0 to 100 and the instruction “Score what you’re hearing” (Figure 1).
On each generation of the evolutionary algorithm, each individual in the
population is played for approximately 10 seconds. At the end of the 10
seconds, the slider values chosen by the audience are averaged and this

value is taken as the fitness of that individual. Individuals ranked
highly by the audience are more likely to be selected as parents for the
next generation.

Figure 1. The web-based interface for audience participation.

This voting system introduces an aspect of gamification to the system,
with the audience participating as “players”. A similar voting-based
idea, but amongst performers, was previously tested in Republic. This
allows participants to vote each other up and down, giving them feedback
on their contributions (and for the bot, explicitly shifting the fitness
evaluation towards the preferences of the other performers and the
audience).

THE PERFORMANCE

Figure 2. A photograph from the debut performance of Autopia.

In June 2019 we tested Autopia in a performance at the Academy of Music
and Theatre Arts, Falmouth University. The performance consisted of
Autopia playing alone for around 1 hour with audience participation to
shape the evolution of sound, at which point two live coding performers
(two of the authors) joined the stage and performed alongside Autopia for
around 30 minutes. Throughout the performance the Autopia interface was
projected onto a large screen (Figure 2), showing the SuperCollider IDE,
an oscilloscope of the output signal, the Utopia interface, and the
logging output from the bot’s evolutionary algorithm. A video excerpt
from the performance is available online. 5

5 https://vimeo.com/349044280

FUTURE WORK

As noted above, currently the GP system is based on hand-coded templates
(lines of SuperCollider code which have been extracted and marked up with
variable placeholders by hand). Whilst the system can already generate a
wide variety of sounds, it is limited by the selection of templates coded
in. The next step is to allow the system to expand its library of
templates as it runs. When other (human) performers execute code and it
is shared through Utopia, the GP system will add the code to its own
population, to introduce variety to the gene pool and allow Autopia to
build upon what the other performers are doing.

The fitness evaluation in the GP system currently comes from audience
participation. This does have some limitations, namely that the speed of
evolution is limited to the speed at which the population members can be
played to the audience, and sometimes (especially early in the
evolutionary process) the sounds may be silence, unpleasant noise or
otherwise undesirable.

We propose to evaluate the fitness of individuals in the population
through a basic machine listening process: individuals will be run
through a second instance of SuperCollider, and the system will perform a
frequency analysis (i.e. Fourier transform) on the resulting audio
output. This will be compared to a frequency analysis of the audio output
being produced by the other performers. The more similarity in frequency
characteristics between the two, the higher the fitness. As a first step
this should at least weed out those population members which produce
undesirable results (such as silence or white noise), though clearly the
refinement of the fitness measure is a fruitful line of future work.
Collins (2006) suggests a number of more sophisticated machine listening
approaches which may prove useful, and provides a JavaScript library 6

implementing several of these techniques.

CONCLUSIONS

Using AI in the context of live coding is relatively new and unexplored.
The idea of AI collaborators has been well explored in Computational
Creativity, including in musical contexts, however the process used by
the AI can sometimes be opaque to observers and is almost certainly quite
different to the process used by human performers. By combining AI with
live coding we hope to overcome this — humans and bots are participating
at the same level and in the same way (i.e. by manipulating code) —
bringing the human-AI ensemble closer to liveness. This also goes towards
achieving the goal, set out by the Birmingham Laptop Ensemble (Booth and
Gurevich) in their manifesto, of “integration, collaboration and the
blurring of the distinctions between, composer-performer-collaborator in
a democratic non-authoritarian ensemble” (BiLE).

The state of flow is clearly desirable in creative activities. The use of
gamification can potentially be a powerful way of getting participants
into this flow state, as well as the idea of voting borrowed from
multiplayer games helping to facilitate the goals described above. The
effect of introducing a bot performer on the human performers’ flow state

6 https://github.com/sicklincoln/MMLL

is less easy to predict — our hope is that the bot will act as a
“conversation partner” (Fiebrink and Caramiaux, 2018) and thus provide
inspiration during a performance.

REFERENCES

Anonymous. Paper on Autopia. Workshop proceedings, 2019a.

Anonymous. Paper on template-based genetic programming. Workshop
proceedings, 2019b.

BiLE. BiLE manifesto. https://bilensemble.wordpress.com/manifesto/.

Graham Booth and Michael Gurevich. Proceeding from performance: An
ethnograpy of the Birmingham Laptop Ensemble.

Andy Clark and David J. Chalmers. The extended mind. Analysis, 58:7–19,
1998.

Nick Collins. Towards Autonomous Agents for Live Computer Music: Realtime
Machine Listening and Interactive Music Systems. PhD thesis, University
of Cambridge, 2006.

Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward. Live coding
in laptop performance. Org. Sound, 8(3):321–330, December 2003. ISSN
1355-7718. doi: 10. 1017/S135577180300030X. URL
http://dx.doi.org/10.1017/S135577180300030X.

Kate Compton and Michael Mateas. Casual creators. In Proceedings of the
6th International Conference on Computational Creativity, pages 228–235,
2015.

Mihaly Csikszentmihalyi. Creativity: Flow and the Psychology of Discovery
and Invention. Harper Perennial Modern Classics. HarperCollins e-books,
2009. ISBN 9780061844034. URL https://books.google.co.uk/
books?id=aci_Ea4c6woC.

Rebecca Fiebrink and Baptiste Caramiaux. The machine learning algorithm
as creative musical tool. In Roger T. Dean and Alex McLean, editors, The
Oxford Handbook of Algorithmic Music. Oxford University Press, 2018. doi:
10.1093/oxfordhb/9780190226992.013.19.

Marius Kalinauskas. Gamification in fostering creativity. Social
Technologies, 4:62–75, 10 2014. doi: 10.13165/ ST-14-4-1-05.

John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN
0-262-11170-5.

Norah Lorway, Brenna Cantwell, and Edie Pearce. FIRENGINE: a new
interface for gestural interaction in live laptop performances. In
Proceedings of New Interfaces for Musical Expression (NIME), 2014.

Alex McLean and Geraint A. Wiggins. Live coding towards computational
creativity. In Proceedings of the First International Conference on
Computational Creativity, 2010.

Mark J. Nelson, Swen E. Gaudl, Simon Colton, and Sebastian Deterding.
Curious users of casual creators. In Proceedings of FDG Workshop:

Curiosity in Games, 2018.

Click Nilson. Live coding practice. In Proceedings of the 7th
International Conference on New Interfaces for Musical Expression, NIME
’07, pages 112–117, New York, NY, USA, 2007. ACM. doi:
10.1145/1279740.1279760. URL http://doi.acm.org/10.1145/1279740.1279760.

Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo Dubnov. An
introduction to musical metacreation. Comput. Entertain., 14(2):2:1–2:14,
January 2017. ISSN 1544-3574. doi: 10.1145/2930672.

Aelita Skarzauskiene and Marius Kalinauskas. Fostering collective
creativity through gamification. 10 2014.

TOPLAP. Manifestodraft. https://toplap.org/wiki/ManifestoDraft, 2010.

Dan Trueman. Why a laptop orchestra? Org. Sound, 12(2):171–179, August
2007. ISSN 1355-7718. doi: 10.1017/ S135577180700180X. URL
http://dx.doi.org/10.1017/ S135577180700180X.

Adrian Ward, Julian Rohrhuber, Fredrik Olofsson, Alex Mclean, Dave
Griffiths, Nick Collins, and Amy Alexander. Live algorithm programming
and a temporary organisation for its promotion. In Olga Goriunova and
Alexei Shulgin, editors, read me, Software Art and Cultures. 2004. ISBN
87988444040.

Geraint A. Wiggins and Jamie Forth. Computational creativity and live
algorithms. In Roger T. Dean and Alex McLean, editors, The Oxford
Handbook of Algorithmic Music. Oxford University Press, 2018. doi:
10.1093/oxfordhb/9780190226992.013.19.

Scott Wilson, Norah Lorway, Rosalyn Coull, Konstantinos Vasilakos, and
Tim Moyers. Free as in BEER: Some explorations into structured
improvisation using networked live-coding systems. Computer Music
Journal, 38(1):54–64, 2014. doi: 10.1162/COMJ_a_00229.

