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10 ABSTRACT: Stretchable electronics may enable electronic
11 components to be part of our organsideal for future
12 wearable/implantable biodiagnostic systems. One of key
13 challenges is failure of the soft/rigid material interface due
14 to mismatching Young’s moduli, which limits stretchability
15 and durability of current systems. Here, we show that
16 standing enokitake-like gold-nanowire-based films chemi-
17 cally bonded to an elastomer can be stretched up to 900%
18 and are highly durable, with >93% conductivity recovery
19 even after 2000 stretching/releasing cycles to 800% strain.
20 Both experimental and modeling reveal that this superior elastic property originates from standing enokitake-like
21 nanowire film structures. The closely packed nanoparticle layer sticks to the top of the nanowires, which easily cracks
22 under strain, whereas the bottom part of the nanowires is compliant with substrate deformation. This leads to tiny V-
23 shaped cracks with a maintained electron transport pathway rather than large U-shaped cracks that are frequently
24 observed for conventional metal films. We further show that our standing nanowire films can serve as current collectors in
25 supercapacitors and second skin-like smart masks for facial expression detection.
26 KEYWORDS: standing nanowire film, unconventional crack, elastronics, electronic skins, strain sensors

27Electronics are transitioning from the current rigid
28 version to a next-generation flexible design, which will
29 ultimately evolve into stretchable electronics (i.e.,
30 elastronics). In an elastronic system, its components can be
31 seamlessly integrated with skin/muscles to become parts of our
32 organs, thereby enabling genuine biodiagnostics in real time
33 and in situ. It is well-known that elastronics requires a seamless
34 combination of stretchability and electrical conductivity, which
35 can be achieved extrinsically or intrinsically.1−3 The former is
36 achieved by designing structures that stretch,4−10 whereas the
37 latter is realized by producing materials that are deform-
38 able.11−22

39 An ideal elastronic system may be made from intrinsically
40 elastic components, including conductors, resistors, diodes,
41 transistors, and sensors, so that they can integrate with
42 modulus-matching skin/muscle,12−19,23,24 ideal for wearable/
43 implantable diagnostics with true capability of health
44 monitoring anytime and anywhere. A viable strategy is to
45 deposit active nanomaterials onto or embed them into
46 elastomers.12,14−17,25−33 Among them, one-dimensional nano-
47 materials are particularly promising as they can be used to
48 construct percolation networks onto or into elastomeric

49matrices.12,14,22,25−32,34 Two-dimensional (2D) percolation
50nanowire-based thin films have demonstrated a wide range of
51applications in wearable electronic skin (e-skin) sensors,35 soft
52energy devices,36,37 organic light-emitting diodes,38 memory
53devices,39 PM 2.5 filters,40 soft robotics,26 and transparent
54electronics.41−46 Despite this encouraging progress, delamina-
55tion and/or cracks at the soft/rigid materials’ interface often
56occur under large or repeated strains due to mismatching
57Young’s moduli between active rigid materials and soft
58elastomeric matrixes. This limits the stretchability and long-
59term durability of current systems, preventing them from being
60used in real-world applications.47

61In this work, we show that standing enokitake-like gold
62nanowire films chemically bonded to elastomeric materials can
63exhibit stretchability (up to 900%) much higher than that of
64conventional vacuum-evaporated bulk metal or percolating
65nanowire films, without any additional extrinsic buckling
66design. This was achieved because of standing enokitake-like
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67 nanowire structures and their strong adhesion with elastomers,
68 leading to distinct stretching behaviors. Unlike conventional
69 metal films (by vacuum evaporation/sputtering or previous
70 nanomaterials films) which typically exhibit large “cliff-like”
71 “U-shaped” cracks that cannot recover upon releasing the
72 strain, our standing enokitake-like nanowire gold films instead
73 show tiny “V-shaped” cracks that are able to recover the
74 conductivity when strain is removed. The formation of V-
75 shaped cracks is due to hierarchical structures of the nanowire
76 film, in which the top nanoparticle layer is mechanically more
77 rigid than the underlying nanowire layer. This leads to initial
78 cracking that starts from the top particle layer under low level
79 of strains (typically below 300%), followed by conventional
80 large U-shaped cracks of the entire film under large strains
81 (typically between 300 and 800%). In both cases, conductivity
82 pathways could be maintained. This unconventional property
83 enables our enokitake-like nanowire film to be used as highly
84 durable conductors which could retain the >93% conductance
85 even after 2000 stretching/releasing cycles to 800% strain. We
86 demonstrate specifically here that they can be applied to
87 fabricate intrinsically stretchable supercapacitors and can be
88 used as “second-skin” facial expression recognition mask
89 sensors.

90 RESULTS AND DISCUSSION
91 By extending the method of seed-mediated electroless plating
92 on rigid surfaces,48 standing enokitake-like nanowire-based
93 gold films could grow on a number of polymer substrates
94 including polyethylene terephthalate (PET), polydimethylsi-
95 loxane (PDMS), and Ecoflex (highly stretchy silicone rubber).
96 Macroscopically, the standing nanowire films were uniform
97 with a shiny gold reflective surface if the underlying

f1 98 elastomeric substrates were flat (Figure 1a−c). The fabrication
99 process is illustrated in Figure S1. In brief, an elastomeric
100 substrate is first treated using O2 plasma to render its surface
101 hydrophilic, which is then followed by silanization with (3-
102 aminopropyl)trimethoxysilane (APTMS). Next, negatively
103 charged seed particles could be immobilized onto this amine-
104 functionalized surfaces via electrostatic attraction. Further

105immersion of the seed-particle-modified elastomer into a
106growth solution containing gold precursors, surfactants, and
107reducing agents could lead to the formation of densely packed
108standing nanowire arrays. The gold films grown on thin Ecoflex
109sheets (∼20 μm thickness) could naturally attach to human
110skin wrinkles before and after stretching (Movie S1). The
111growth process was found to be scalable and able to
112conformably coat a range of other polymer substrates from
113macroscopic to microscopic (Figure S2a−f) and even to
114textured skin replicas (Figure 1d,e and Figure S2g). Superior
115skin conformal attachment in conjunction with chemical
116inertness and biocompatibility of gold indicates the great
117potential of our nanowire film as second skin patches for
118various biomedical applications.
119Further top-view and side-view characterizations by scanning
120electron microscopy (SEM) revealed enokitake-like nanowire
121film structures (Figure 1f,g), in which the top layer (“head”
122side) consists of closely packed gold nanoparticles with a
123diameter of 9.3 ± 2.1 nm. The bottom layer (“tail” side) is
124composed of nanowires standing normal to the elastomer
125substrates, with a typical nanowire diameter of 7.8 ± 1.7 nm. In
126addition, the number density of nanowires can reach as high as
127∼1.09 × 104 μm−2, which is much higher than that of
128previously reported 2D nanowire percolation network
129systems.35−39 The estimated porosity of the head side is 65−
13072%, whereas the tail side is 50−55%. Longer growth times
131lead to longer nanowires but reach the plateau in about 20 min
132(SEM images in Figure 1h−k). We obtained nanowires that
133were much longer than those in the literature48 by using
134concentrated growth solution to achieve tunable lengths up to
135∼15 μm (Figure 1l). In addition, the diameter of both
136nanoparticle and nanowire did not change much as the
137nanowire became longer (Figure S3). It is even possible to
138grow staircase-like nanowire films by mask-assisted step growth
139(Figure S4). Overall, the structural features including accurate
140height control, standing enokitake-like configuration, and
141control over surface topological structures indicate that our
142system is different from a dominant nanowire percolation

Figure 1. Characteristics of standing enokitake-like nanowire-based gold films. (a−c) Optical appearances of standing enokitake-like
nanowire-based films grown on flat elastomers: (a) PET, (b) PDMS, (c) Ecoflex. (d,e) Photographs of the thin standing enokitake-like
nanowire-based gold films with skin-textured Ecoflex substrate on a human thumb knuckle while bending and releasing, respectively. (f,g)
Typical top-view and side-view SEM image of standing enokitake-like nanowire-based gold films. Scale bar: 200 nm. (h−k) SEM images of
standing nanowire films with different thicknesses: (h) ∼1.5 μm, (i) ∼3.5 μm, (j) ∼7 μm, and (k) ∼14 μm. Scale bar: 1 μm. (l) Change of
nanowire height as a function of growth time.
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143 network26,35−39,46 and may be viewed as a three-dimensional
144 percolation system.
145 We systematically investigate stretchability of the standing
146 nanowire-based film. When directly grown on Ecoflex
147 substrates with the nanowire chemically bound to surfaces,
148 the films exhibit exceptionally high stretchability up to 800% of

f2 149 strain (Figure 2a, red solid line). With additional Ecoflex
150 encapsulation, the conductivity was observed to survive even at
151 the 900% strain, which is almost the physical limit of the
152 Ecoflex elastomer (Figure S5). The improved stretchability
153 with Ecoflex encapsulation may be due to the enhanced
154 bonding at the top side, leading to more uniform crack
155 propagation of the nanoparticle, preventing catastrophic
156 failure. This observation is in agreement with sandwiched
157 silver-nanowire-percolated structure reported previously.49

158 Remarkably, the original conductivity could be recovered
159 upon stress release (Figure 2a, red dashed line). In control
160 experiments, we found that the evaporated gold can only
161 survive ∼10% strain before conductivity is lost, and the
162 percolation lying-down nanowire film is only able to tolerate a
163 ∼150% strain (blue solid line in Figure 2a). Both bulk metal
164 and percolation nanowire films show no conductivity recovery
165 upon stress release (black and blue dashed lines in Figure 2a).
166 We further plot normalized resistance (R/R0) versus
167 normalized length square (L/L0)

2 for experimental data
168 collection and theoretical prediction (Figure 2b), where R0
169 and L0 are the resistance and length, respectively, of samples at
170 0% strain. The deviation starts at a strain of ∼150%, above

171which cracks form and propagate, which is further validated
172from optical imaging (inset of Figure 2b). This threshold value
173is 3-fold that for copper-bonded Kapton film.47 Note that
174800% stretchability for an enokitake-like standing nanowire
175film outperforms the state-of-the-art inorganic stretchable
176conducting film12,15,17,25,50−57 (Figure 2c). Remarkably, the
177film conductance G retained >93% of the initial conductance
178(G0) after stretching/releasing to 800% strain for 2000 cycles
179(Figure 2d). This has not yet been achieved, to the best of our
180knowledge, by previously reported stretchable conductors
181without using prestrain or buckling designs.
182We further established that strong adhesion between the
183nanowire and Ecoflex substrate and “accordion-fan-like” V-
184shaped cracking processes is responsible for the exceptional
185high stretchability observed. The adhesion test (Movie S2)
186clearly shows that our standing enokitake-like nanowire film
187could survive in the normal Scotch tape test multiple times
188without significant resistance change. The strong adhesion may
189be due to the use of APTMS that serves a bifunctional
190molecular glue. Its amine side strongly interacts with gold
191nanowires, and its silane sides covalently bond to Ecoflex
192surfaces. The introduction of an organic intermediate layer has
193been demonstrated as an effective strategy to improve the
194adhesion between the metallic layer and polymeric substrates,
195thus enhancing the overall performance of the stretchable
196conductive film.58−61 Unlike the continuous bulk metal film,
197our nanophased enokitake-like structures offer better stretch-
198ability (Table S1).

Figure 2. Superior intrinsic stretchability of standing enokitake-like nanowire-based gold films. (a) Comparison of stretchability among
evaporated Au films, lying-down gold nanowire film and standing enokitake-like nanowire-based gold film. (b) Plot of normalized resistance
(R/R0) versus normalized length (L/L0). Scattered black squares denote experimental data; the red curve is the theoretical prediction based
on the equation R/R0 = (L/L0)

2. Inset: Representative optical images of standing nanowire film under different strains of 0, 100, 250, and
300%. Scale bar: 20 μm. (c) Comparison of this work to recent work in elastic conductors. Data points are extracted from the following
papers: blue open triangle, Au nanoparticles (Au NPs);50 pink open circle, Ag nanowires (Ag NWs);54 black open square, Ag NWs;25 lime
open diamond, carbon nanotube (CNT);12 black open pantagon, in situ Ag NPs;17 orange open pentagon, Ag nanoparticles (Ag NPs);55

pistachio open inverted triangle, Au nanosheets (Au NSs);40 Royal cross, carbon nanofibers (CNFs);57 green open pantagon, Ag flakes;41

sienna left open triangle, CNT;15 purple open right triangle, Ag carbon nanotubes (Ag CNT);40 cyan open circle, CNT;56 red filled star, this
study. (d) Conductance change of standing enokitake-like nanowire-based film during 2000 stretching/releasing cycles up to 800% strain.
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199 Unlike conventional bulk gold or percolation nanowire films,
200 our standing nanowire films have hierarchical structures with
201 close-packed nanoparticle arrays on the top and aligned
202 nanowires chemically bound to elastomeric substrates. This
203 leads to a distinct stretching mechanism (Figure S6). For
204 further investigation, we carried out detailed multiscale
205 morphological studies in order to understand the exceptional
206 stretchability observed. We scrutinized morphological features
207 in different locations of rectangle standing nanowire metallic
208 nanopatches under various strains by optical microscopy
209 (Figure S7). This offers a panoramic overview of our standing
210 nanowire film stretching process at millimeter and micrometer
211 length scales. Evident cracks will not be seen until about 300%
212 strain is applied. At the nanoscale, atomic force microscopy
213 (AFM) and cross-sectional SEM characterization under a
214 stretched state clearly show the presence of V-shaped cracks
215 (Figures S8 and S9). The cracking depths measured for the
216 two particular standing nanowire films under different strains
217 were significantly lower than the film thickness. Assuming that
218 the nanowire deforms elastically without breaking up and with
219 its ends firmly attached to elastomeric substrates, we can
220 visualize a V-shaped cracking process by finite element analysis
221 (Movie S3). However, both bulk gold films and percolation

f3 222 nanowire films exhibit only typical U-shaped cracks (Figure
f3 223 3a−d; also see Figure S10 for the schematic illustration of V-

224 shaped crack and U-shaped crack). Both can tolerate a level of
225 strain much less than that for the standing nanowire films. The
226 concurrent film delamination prevents recovery of original
227 structures, hence, leading to poor conductivity recovery
228 (Figure S6a,b). Note that the stretching mechanism of our
229 nanowire film is fundamentally different from previous aligned
230 carbon nanotube arrays where building blocks were not

231standing normal to the substrate but were lying down flush on
232the substrate.30

233The above multiscale structural characterizations and finite
234elemental analysis reveal the following mechanistic insights.
235Cracks initiate from the head side, which serve as unzipping
236points for strongly bundling nanowire arrays, yet the
237interacting nanowire tail ends deform conformably to the
238substrate without cracking (Figure 3e,f and Figure S6c). At the
239point when substrate elongation commences, the mechanically
240rigid top gold nanoparticle layer (head side) cracks, which
241triggers the formation of V-shaped cracks as the strain level is
242increased by unzipping them from the top side. This typically
243occurs when the strain level is less than ∼150% strain, where
244no delamination occurs between substrates and our gold film at
245this stage. Obvious wrinkles are observed in the middle part of
246the standing nanowire film because of the Poisson ratio of
247Ecoflex substrate (Figure S7, middle left). As the strain
248increases further to a certain threshold, large U-shaped cracks
249form as a result of the standing nanowire film sliding/
250delaminating from the supporting elastomeric substrates. The
251U-shaped cracks propagate as the strain level is further
252increased; however, percolation conductive pathways are still
253maintained until reaching a catastrophic failing point. The V-
254shaped and U-shaped cracks coexist at the high strain levels
255typically from 300 to 800%. The self-repairable cracks were
256also demonstrated from more detailed SEM characterization.
257By inspecting the same spot in a particular sample, negligible
258morphological changes were observed before and after 60 000
259cycles of stretching/releasing to 185% strain (Figure S11). Its
260excellent stretchability was maintained even after 40 weeks of
261storage in ambient conditions without encapsulation (Figure
262S12).

Figure 3. Optical microscopic and AFM characteristics of three different gold films (evaporated gold film, lying-down nanowire gold film,
and standing enokitake-like nanowire-based gold film). Microscopic behavior of (a) evaporated Au film, (c) lying-down nanowire gold film,
and (e) standing enokitake-like nanowire-based gold film by optical microscope imaging at various strain (from 0, 300, and back to 0%),
respectively. AFM images and height plots of (b) evaporated gold film, (d) lying-down nanowire gold film, and (f) standing enokitake-like
nanowire-based gold film under 300% strain. Nanowire height for standing enokitake-like nanowire-based gold film is 1.5 μm. Scale bar: 200
μm. All optical images have the same resolution.
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263 We also found that the stretchability of the standing
264 nanowire film showed a decreasing trend, whereas nanowire
265 length increased (Figure S13a). As the nanowire length
266 increased to 14 μm, the film lost conductivity at 80% strain,
267 which is 10 times lower than that of the 1.5 μm film. As
268 expected, the overall nanowire/Ecoflex sheet became stiffer as
269 the nanowire length increased (Figure S13b). This could be
270 due to strong wire-to-wire interactions among longer nano-
271 wires, rendering nanowire films more rigid, approaching bulk
272 gold mechanical properties.
273 The facile growth of a standing nanowire film in conjunction
274 with their outstanding performances indicates their suitability
275 for soft electronics applications. As the first proof of concept,
276 we demonstrate their use in soft, stretchable supercapacitors
277 using our gold film with short nanowires. In a typical
278 symmetrical layout, we were able to achieve excellent
279 capacitive behavior (Figure S14), which also shows negligible
280 changes over a wide range of applied tensile strain from 0 to
281 250%. The slight capacitance increase from 0 to 100% strain
282 may be due to increased surface area of the nanowire
283 unzipping process under strain. Further stretching beyond
284 the 100% strain caused a very small decrease in the
285 capacitance, retaining 84% of the original capacitance at a
286 strain up to 250% (Figure S15a,b). This slight degradation of
287 capacitance is possibly due to the conductivity decreases of
288 standing nanowire film electrodes and/or deformation of the
289 electrolyte layers over stretching. Nevertheless, specific
290 capacitance could be maintained by 99% after 200 stretch/
291 release cycles at the strain of 200%, suitable for wearable on-
292 body energy storage devices (Figure S15c,d).

293The excellent skin conformability of our standing nanowire
294film enabled its use as e-skin smart nanopatches for detecting
295childhood autism disorder. Note that the smart nanopatches
296were fabricated by a strain-sensitive film from longer standing
297nanowires. Instead of an optical approach used by the NODA
298diagnostic tool available on Apple store, we used nine e-skin
299nanopatches to monitor particular pieces of muscle/skin
300 f4stretching related to facial expression (Figure 4). Based on
301the information from the Facial Action Coding System
302(FACS) library from Ekman’s group,62 we could relate
303electrical signals to the five different emotional expressions
304(happy, sad, angry, surprise, and fear) in a wireless manner
305(Movie S4). Different facial expressions can be read from a
306mobile screen in real time.

307CONCLUSIONS
308In summary, we report the exceptional high stretchability and
309durability of standing enokitake-like nanowire-based gold films,
310which are unexpected in the context of current dominant
311nanowire percolation network-based stretchable conductors.
312Our results clearly reveal that this is attributed to standing
313enokitake-like nanowire structures, vertically aligned config-
314uration, and strong chemical bonding interactions between
315standing nanowire films and elastomeric substrates. Together,
316this leads to distinct elastic properties that have never been
317observed for conventional bulk metal films or other nanoma-
318terial networks (both vertically aligned and lying-down aligned
319carbon-nanotube-based systems; see Table S2 in the
320Supporting Information). We further demonstrate the
321applications of our standing nanowire film in stretchable
322supercapacitors and wearable e-skin sensors, beyond which we

Figure 4. Real-time facial expressions monitoring. (a) Schematic illustration of the detection system setup. (b) Schematic of standing
enokitake-like nanowire-based gold film smart mask design according to nine facial muscle group movements caused by various emotions.
(c) Mobile device interface for result reading. (d−h) Real-time monitoring of five different facial expressions of happy, sad, angry, surprise,
and fear.
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323 may find a myriad of additional applications in future
324 elastronics.

325 METHODS
326 Chemicals. Gold(III) chloride trihydrate (HAuCl4·3H2O, 99.9%),
327 triisopropylsilane (99%), 4-mercaptobenzoic acid (MBA, 90%),
328 APTMS, sodium citrate tribasic dihydrate (99.0%), L-ascorbic acid,
329 poly(vinyl alcohol) (PVA) powder, H3PO4, and ethanol (analytical
330 grade) were purchased from Sigma-Aldrich. All solutions were
331 prepared using deionized water (resistivity >18 MΩ·cm−1). All
332 chemicals were used as received unless otherwise indicated.
333 Conductive wires were purchased from Adafruit.
334 Elastomeric Substrates. PDMS substrates were made by mixing
335 Sylgard 184 silicone elastomer base and curing agent at a weight ratio
336 of 10:1. The mixture was poured on a 6 in. flat-plate Petri dish using
337 0.5 mm height shims as spacers and cured at 65 °C for 2 h in an oven.
338 Ecoflex substrates were made by pouring Ecoflex curable silicone fluid
339 (Smooth-On Ecoflex 00-30) into a 6 in. flat-plate Petri dish and
340 curing under room temperature for 4 h.
341 Synthesis of Standing Gold Nanowire Films. A modified seed-
342 mediated approach was used, as described in the literature.8 First, 2
343 nm seed gold nanoparticles were synthesized. Briefly, 0.147 mL of 34
344 mM sodium citrate was added into a conical flask with 20 mL of H2O
345 under vigorous stirring. After 1 min, 600 μL of ice-cold, freshly
346 prepared 0.1 M NaBH4 solution was added with stirring. The solution
347 turned brown immediately. The solution was then stirred for 5 min
348 and stored at 4 °C until needed.
349 To grow standing nanowires on substrates (e.g., Si wafer, Ecoflex),
350 O2 plasma was applied to render the surfaces hydrophilic. Depending
351 on the types of substrates, the plasma treatment time varied from 2 to
352 17 min. Then the substrates were functionalized with an amino group
353 by silanization reaction with 5 mM APTMS solution for 1 h. APTMS-
354 modified substrates were immersed into excess citrate-stabilized Au
355 seed (3−5 nm) solution for 2 h to ensure the saturated adsorption of
356 gold seeds, followed by rinsing with water four times to remove the
357 weakly bound seed particles. Finally, seed-particle-anchored substrates
358 were in contact with a growth solution containing 980 μM MBA, 12
359 mM HAuCl4, and 29 mM L-ascorbic acid, leading to the formation of
360 standing nanowire films. The length of nanowires depended on the
361 growth reaction time. Typical nanowire heights of ∼1.5, ∼3.5, ∼5, ∼7,
362 and ∼14 μm were obtained by adjusting the growth time to 2, 4, 5, 8,
363 and 15 min, respectively.
364 Lying-Down Gold Nanowire Films. HAuCl4·3H2O (44 mg) was
365 added into 40 mL of hexane, followed by addition of 1.5 mL of
366 oleylamine. After the gold salts were completely dissolved, 2.1 mL of
367 triisopropylsilane was added into the above solution. The resulting
368 solution was left to stand for 2 days without stirring at room
369 temperature until the color turned from yellow to dark, indicating the
370 formation of gold nanowires. The chemical residues were removed by
371 repeated centrifugation and thorough washing using ethanol/hexane
372 (3/1, v/v) and finally concentrated to a 2 mL stock solution in
373 hexane. The lying-down gold nanowire films could then be obtained
374 by a simple drop-casting approach.
375 Vacuum-Evaporated Gold Film. A 100 nm gold film could be
376 obtained using an e-beam evaporator (Intlvac Nanochrome II, 10
377 kV).
378 Characterization. SEM imaging was carried out using a FEI
379 Helios Nanolab 600 FIB-SEM operating at a voltage of 5 kV. The
380 sheet resistances of the standing enokitake-like nanowire-based gold
381 films were carried out on a Jandel four-point conductivity probe by
382 using a linear arrayed four-point head. To test the electromechanical
383 responses for strain and bending sensing, the two ends of the samples
384 were attached to motorized moving stages (THORLABS model
385 LTS150/M). Uniform stretching/bending cycles were applied by a
386 computer-based user interface (Thorlabs APT user), and the current
387 changes were measured by the Parstat 2273 electrochemical system
388 (Princeton Applied Research). For the analysis of detailed point load
389 or pressure responses, a computer-based user interface and a force
390 sensor (ATI Nano17 force/torque sensor) and a Maxon Brushless

391DC motor using a high-resolution quadrature encoder (15 μm of
392linear resolution) were used to apply an external point load or
393pressure. Ecoflex with a thickness of 500 μm was chosen as the
394substrate of the standing nanowire film in a strain test. PET with a
395thickness of 125 μm was chosen as the substrate of the standing
396nanowire film in a strain test. PDMS with a thickness of 1 mm was
397chosen as the substrate of the standing nanowire film in a point load/
398pressure test. The reflectance (R) data were collected from a
399PerkinElmer UV−vis−NIR spectrophotometer (Lambda 1050) with
400an integrating sphere setup.
401Simulation. The finite element analysis model was implemented
402in the ABAQUS 6.14/Standard software. Ecoflex substrate was
403meshed using structured hex elements, whereas gold nanowires were
404used a tetrahedral elements. There were a total of 2640 linear
405hexahedral elements in the Ecoflex substrate and 106 200 quadratic
406tetrahedral elements in the gold nanowire section. The aspect ratio of
407the gold nanowire was modeled at 100, with a length of 800 nm and a
408diameter of 8 nm. The elastic modulus and Poisson’s ratio are 400
409kPa and 0.49 for the Ecoflex substrate and 70 GPa and 0.42 for
410nanowire, respectively. The boundary conditions were set by fixing
411the left end of Ecoflex substrate and stretching uniaxially to 800%
412elongation. The contact condition between the nanowire layer and
413Ecoflex substrate was assumed to be pinned using a tie constraint.
414Elastic Supercapacitors. The standing enokitake-like nanowire-
415based gold film was cut into small pieces with suitable shapes and
416sizes. A gel solution that contained PVA powder (1.0 g) and H3PO4
417(1.0 g) in water (10.0 mL) was coated on top of the prepared films
418and dried in air for 5 h. Then two such-prepared standing enokitake-
419like nanowire-based gold film electrodes were assembled with
420sandwiched electrolytes to form a symmetrical electrochemical
421capacitor.
422Wireless Facial Expression Monitoring. The circuit was
423composed of nine standing enokitake-like nanowire-based gold film
424sensors for measuring 11 facial muscle groups, and the supporting
425circuit was constructed with 3.3 V power supply and 13 330 Ω
426resistors. After the standing enokitake-like nanowire-based gold film
427sensors were mounted on the particularly targeted muscle groups on
428the subject’s face, electrical responses of each sensor were recorded. A
429Bluetooth low energy technology was used to transfer the analogue
430reading data of each sensor to an Android OS-equipped mobile device
431(e.g., phone or pad style device). A specially designed app, already
432installed on the mobile device, first went through a machine learning
433session, which was referenced to the FACS library from Ekman’s
434group. The FACS contributes as the reference blueprint for pattern
435recognitions to detect various facial expressions. This system was able
436to process electrical responses from facial muscle groups in real time,
437provided the baseline for measuring subject’s detailed facial
438movement, and eventually translated it to different emotional
439expressions. The system was also able to create a data dictionary to
440store the data based on the nine sensor readings to specific muscle
441groups.
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