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Abstract  

Carbon nanotubes (CNTs) have been explored to increase the mechanical properties and 

electrical conductivity of polymeric fibers through compounding with polymer to be 

extruded into fibers. However, this route creates major challenges because CNTs have 

strong cohesion and tend to aggregate and precipitate due to their poor interfacial 

interaction with polymers. CNTs can be individualized from agglomerations to enhance 

the mechanical and electrical properties of polymer fibers but even so the capillary forces 

during solvent drying creates CNTs bundling. In this study, classical molecular dynamics 

(MD) simulations are used to predict and characterize CNTs-polymer interface 

mechanism in two different polymer matrices: polyvinyl butyral (PVB) and polystyrene-

co-glycidyl methacrylate (P(St-co-GMA)). The dominated interface mechanisms are 

discovered to shed light on CNTs dispersion in solvent based systems and to explore the 

prerequisites for stabilized nanofluids. Our results showed that π-stacking interactions 

between aromatic groups and graphene surfaces of CNTs as in P(St-co-GMA) systems, 

play an important role in dispersion of CNTs, whereas slight repulsions between CNTs 

and PVB chains lead to large morphological differences and CNTs bundles in many chain 

systems. Altogether, the results indicated that polymers with structures having strong 

interactions with the surfaces of SWNTs through π-π interactions are more effective in 

dispersing CNTs and caused stabilized  solutions in wet fiber processing.  
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Introduction  
CNTs first reported by Oberlin et al. [1] and Iijima [2] have attracted attention of many 

scientists due to their unique mechanical, electrical and thermal properties. This form of 

carbon containing hexagons with concentric arrangement of cylinders has three 

distinctive types such as single-walled nanotubes (SWNTs), double-walled nanotubes 

(DWNTs) and multi-walled nanotubes (MWNTs). SWNTs have one tubular rolled layer 

of hexagonal carbon atoms with diameters ranging from 0.4 to 3 nm (Figure 1(a)) whereas 

MWNTs have several coaxial cylindrical layers with diameters up to 100 nm [3]. CNTs 

are excellent nano-reinforcement materials due to their low mass density, large aspect 

ratio and high elastic modulus (approximately 1 TPa [4]) and thus used in numerous 

applications such as composites [5-8], electrochemical devices [9-12], hydrogen storage 

[13-16], field emission devices [17-19], nanometer-sized electronic devices [20-22], 

sensors and probes [23-26] and fibers [27-29] etc. However, the superior performance of 

CNTs which depends on the distribution of length and diameter, the chirality, and its 

defect and impurities cannot as yet be fully transferred into macro-scale composites. 

Many studies investigated an appropriate scheme for transferring individual nanotubes 

properties into polymer composites [8, 9, 30-34]. In wet fiber processing, the major 

drawback is to obtain a good dispersion of CNTs by maintaining attractive interaction 

with the surrounding polymer matrix [8]. Moreover, it is also essential to stabilize this 

dispersion to prevent reaggregation of the CNTs throughout the processes.  
In literature, several polymer matrices are reported for CNTs reinforced with 

nanofiber/fibers that benefit from CNTs-polymer attractive interactions [35-37]. For 

instance, recent experimental observations indicated that P(St-co-GMA) containing 

aromatic rings have attractive π-π interaction with the graphitic side walls of CNTs 

[38],which is called “π -stacking”. This interaction leads to CNTs bundles which are 

major obstacles to their processing [39]. There are several techniques reported to 

overcome this challenge, particularly in wet fiber processing [40-43]. Homogenously 

dispersed polymer/nanotube solutions lead to well oriented CNTs in the resultant 

nanofibers/fibers. For instance, adding surfactants (e.g. sodium dodecyl sulphate), large 

amphiphilic polymers (e.g. polyvinyl pyrrolidone) and natural macromolecules (e.g. 

polysaccharide, Gum arabic) which can be adsorbed onto the hydrophobic nanotubes help 

to stabilize CNTs dispersions [44, 45]. In addition, ultrasonication is another useful 

technique to overcome the entanglement of nanotubes and to break up the agglomerates. 

However, it might cause some defects and irregularities into the CNTs [46]. Chemical 

functionalization of CNTs also helps to disperse CNTs, but it dominantly affects their 

electronic and photonic properties [47]. Different types of polymers, including 

polystyrene, polyurethane, polystyrene-co-glycidyl methacrylate (P(St-co-GMA)), poly 

(vinyl butyral) (PVB) have been used as polymer matrices to produce CNTs composite 

nanofibers [47-50]. Polymers containing aromatic rings are able to wrap CNTs via π-π 

stacking and van der Waals interactions between the polymer chain and nanotube surface 

[51]. Ozden-Yenigun et al. used surface reactive copolymer (P(St-co-GMA)) and 

successfully produced CNTs reinforced electrospun nanofibers without any modification, 

they reported the enhancement in flexural strength (15%) and flexural modulus (20%) 
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within the incorporation of CNTs into epoxy resin[38]. Charitidis et al. used PVB as 

matrix in CNTs integrated nanocomposites to enhance electrical and thermal properties 

[52, 53]. Later, Imaizumi et al. produced MWNTs/PVB composite electrospun nanofibers 

and twisted these nanofibers to have composite nanofiber yarns [54]. Enhanced 

mechanical, electrical and thermal properties were reported and explained by referring 

CNTs-PVB interactions. As seen in literature, P(St-co-GMA) (Figure 1(b)) and PVB 

(Figure 1(c)) are two different polymers that successfully promise CNTs oriented 

nanofibers. However, dominated mechanism in liquid state prior to fiber forming was not 

explained in detail. Herein we aimed to explore these two different polymer matrices’ 

dispersing ability of CNTs, which are in different chemical nature.  

Classical molecular dynamic (MD) simulations provide insight into interaction 

mechanism indifferent supramolecular systems [55, 56]. But still, computational cost of 

such simulations limits the construction of representative experimental models [56, 57]. 

MD simulation is frequently used to explore CNTs and their interactions in polymer 

matrices [58-63]. For instance, Uddin et al. investigated the effect of surfactant chemistry 

in CNTs/surfactant in water based solutions via MD [64]. They also reported the 

dominated dispersive interactions in CNTs/ Polyethylene oxide/water systems and 

pointed out the hydrophobic interactions of CNTs in water based solutions [65]. Pang et 

al. explored the dispersion state of CNTs in aqueous solutions and the wrapping motion 

of silicon surfactants experimentally and computationally and noted that van der Waals 

attractions leaded to steric stabilization [66]. Sohrabi et al. probed pure and mixed 

surfactants adsorption mechanism onto nanotubes via MD and revealed how surfactant 

approached to the surface and warp CNTs at low concentrations. [67]. In another study, 

Xiao et al. functionalized CNTs by covalent linking of alkyl chains and investigated these 

wrapping ability around CNTs, and discussed the aggregation behavior of functionalized 

CNTs via MD [68]. The results showed that CNTs without alkyl chains experienced 

smooth pullout, while those with alkyl chains underwent an uneven pullout by exhibiting 

five failure stages. In addition, the crystallization of polyethylene molecules occurred in 

the vicinity of CNTs which increased the interfacial shear strength by 15% [68].

 
Figure 1. Molecular structures of (a): Ball and stick model of (6,6) single-walled CNTs with diameter of 

8.14Å and length of 14.76Å sketched by Materials Studio ® 8.0 [69] and chemical structures of (b): 

Polystyrene-co-glycidyl methacrylate (P(ST-co-GMA)) (c): Poly(vinyl butyral) (PVB) (d): 

dimethylformamide (DMF). 

In this study, MD simulations are used to predict and characterize polymer-CNTs 

interface mechanisms in PVB and P(St-co-GMA) polymer solutions which are proven 
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good polymer matrices for composite fibers without any further functionalization. [38, 

70]. Thus, P(St-co-GMA) and PVB polymers are introduced into atomistic models to 

investigate and compare their interactions with CNTs by monitoring the effect of aromatic 

groups on CNTs dispersion. We also incorporate solvent molecules dimethylformamide 

(DMF) (Figure 1 (d)) to simulate solvent-based fiber solutions, as in wet-fiber processing. 

Local structure is evaluated by analyzing radial distribution function of CNTs 

concentration profile and radius of gyration of polymer to understand dominated particle-

polymer interaction mechanism [71, 72]. Clustering behavior and single polymer 

dynamics of neat and CNTs containing polymer solutions are determined to provide 

insight into the nanofluids behavior at the macro-scale. 

 

 

Materials and Methods 
 

The molecular simulation software package Materials Studio® 8.0 [69] was used to 

construct the initial molecular structures, simulations and post-processing of the collected 

trajectories. COMPASS (Condensed-phase Optimized Molecular Potentials for 

Atomistic Simulation Studies) force field which was used in this study, has proven to be 

effective in defining properties of synthetic polymers [73]. Simulation boxes were 

constructed by Amorphous Cell module at target density of 1.0 g/cm3 as in Table 1 and 

the number of molecules in both systems were adjusted to keep the number of atoms 

constant. Figure 2(a) and Figure 2(b) represent simulation boxes of PSTcoGMA-1-CNTs 

and PVB-1-CNTs, respectively. PVB polymer has 10 monomers while P(St-co-GMA) 

copolymer has 27 styrene monomers and 3 glycidyl methacrylate monomers. SWNTs 

were (6,6) single-walled CNTs with diameter of 8.14Å and length of 14.76Å (Figure 

1(a)).MD simulations of the solvated systems were carried out in the isothermal-isobaric 

(NPT) statistical ensemble, at P=1 atm and T=300 K. To maintain temperature and 

pressure fixed at their prescribed values, the Andersen – thermostat [74] and Berendsen 

[75] barostat were used. 
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Table 1. Simulated models of PVB and P(St-co-GMA), construction parameters and their cell 

parameters for MD simulations. 

P(St-co-GMA) Systems 

Model Name # of polymer molecules # of DMF 

Molecules 

# of SWNTs Cell Parameters 

(Å) 

PSTcoGMA-0-CNTs 5 50 0 32.03 

PSTcoGMA-1-CNTs 5 50 1 39.05 

PSTcoGMA-2-CNTs 5 50 2 40.07 

PSTcoGMA-3-CNTs 5 50 3 41.04 

PSTcoGMA-4-CNTs 5 50 4 41.96 

PSTcoGMA-5-CNTs 5 50 5 42.84 

 

PVB Systems 

Model Name # of polymer molecules # of DMF 

Molecules 

# of SWNTs Cell Parameters 

(Å) 

PVB-0-CNTs 10 100 0 32.95 

PVB-1-CNTs 10 100 1 33.81 

PVB-2-CNTs 10 100 2 41.05 

PVB-3-CNTs 10 100 3 41.98 

PVB-4-CNTs 10 100 4 42.87 

PVB-5-CNTs 10 100 5 43.72 

Each system was subject to detailed molecular dynamics simulations up to 20 ns. The 

trajectories of equilibrated systems were saved and analyzed by Materials Studio® 

Forcite Analysis Module to monitor structural changes. Local structure evolution was 

completed by analyzing structural parameters such as radial distribution functions 

(RDFs), CNTs concentration profile and radius of gyration (RG) of polymers of the 

equilibrated trajectories. Pair correlation functions of each system including intra and 

intermolecular components were calculated at cutoff 12.5Å. Last 5ns trajectories were 

averaged out to determine concentration profiles of CNTs-CNTs pairs and RDFs of 

CNTs-CNTs, CNTs-DMF, and CNTs- PVB/P(St-co-GMA) pairs at different CNT 

concentrations, and to understand dominated clustering and dispersion properties, 

whereas RG of PVB and P(St-co-GMA) molecules were explored to reveal single chain 

dynamics in presence of CNTs.  
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Figure 2. Constructed simulation boxes of (a): PSTcoGMA-1-CNTs and (b): PVB-1-CNTs systems which 

are described in Table 1. For better description, CNTs were displayed in CPK representation, while stick 

and line representations are preferred for polymer and solvent molecules, respectively. 

 

 

Results and Discussion 
 

Dispersion of CNTs in PVB/DMF systems 

 

Molecular interactions between SWNTs, polymer and DMF solvent molecules were 

studied at different CNTs number densities as given in Table 1, to provide detailed 

information at the molecular level as well as to understand the dominated mechanism. 

First RDFs of PVB systems were calculated and RDFs of CNTs-CNTs, PVB-CNTs, and 

DMF-CNTs are displayed in Figures 3, respectively. Figure 3(a) and Figure 3(b) describe 

RDFs of CNTs-CNTs and PVB-CNTs at different CNTs number densities, which are 

complementary to describe short and long range of order in presence of CNTs in 

PVB/DMF solutions. Figure 3(a) revealed that the first coordination shell of CNTs–CNTs 

interactions ends at ca. 5 Å, displaying sharper distributions in PVB-2-CNTs and PVB-

3-CNTs. RDFs of CNTs-PVB at around 5Å revealed that increasing CNTs concentration 

also altered polymer-CNTs interaction in short distances due to increase in probability of 

finding each other. While, at longer distances, as beyond 10Å, CNTs-CNTs interactions 

and CNT-PVB interaction were balanced. But still, because of the tendency of CNTs to 

prefer CNTs over polymer molecules, there will be an uneven distribution of CNTs and 

polymer molecules elsewhere. This could lead to CNTs clustering particularly in CNTs 

rich suspensions, which also pointed one of the major drawbacks to use CNTs at high 

loading levels (above 10 wt%). PVB-2-CNTs and PVB-3-CNTs systems revealed that 

although CNTs tend to agglomerate in low concentrations due to the “π-stacking” 

phenomena [76], in higher concentration models as in PVB-4-CNTs and PVB-5-CNTs, 

CNTs have to occupy the space in every coordinates (Figure 3(a)). It could be related to 

the abundance of the CNTs in the same cell box dimensions. We should also note that 
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Imaizumi et al. [54] observed highly oriented and individual MWNTs along fiber axis, at 

10 wt% MWNT concentration, which was due to the electrified liquid flow formed during 

electrospinning. On the other hand, additive effect of the MWNT on the electrical 

conductivity of the as-spun composite fiber was quite limited. They concluded that the 

PVB matrix polymer blocked the electrical contacts between the nanotubes. We 

rationalize this outcome by considering the distribution of CNTs. In PVB systems, CNTs 

tend to cluster more with its own kind than the other species, which leads to prevent to 

build required network for electrical conductivity.  
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Figure 3. (a) Radial Distribution Function (RDF) of CNTs-CNTs in PVB-2-CNTs, PVB-3-CNTs, PVB-

4-CNTs, PVB-5-CNTs models, (b) RDF of PVB-CNTs in PVB-1-CNTs, PVB-2-CNTs, PVB-3-CNTs, 

PVB-4-CNTs, PVB-5-CNTs models and (c) RDF of DMF-CNTs in PVB-1-CNTs, PVB-2-CNTs, PVB-3-

CNTs, PVB-4-CNTs, PVB-5-CNTs models. 

Even though, DMF solvent molecules are mobile enough, the tendency of DMF 

molecules towards CNTs are reduced by increased CNTs concentrations, as seen in 

Figure 3(c). Therefore, we observed that solvent choice does not provide additive effect 

to disperse CNTs in PVB systems. Single chain dynamics and dimensional stability could 

provide insight into attractive and repulsive interactions around polymer chains. The 

analysis on RG expressed polymer chain conformations and exhibited how the gyration 
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radius changed due to these repulsive/attractive interactions. As seen in Figure 4, RG of 

PVB chains were calculated at different CNTs concentrations. For better description, 

Gaussian fits of curves given in Figure 4 while raw data are also provided in Figure S1. 
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Figure 4. Gaussian fits of Radius of Gyration (RG) of PVB molecules in all equilibrated PVB models. 

 

The measures on chain size, RG, carry information on the local chain geometry, which 

depends on valence and dihedral angle distributions as well as local interactions [77]. 

Figure 4 describes that with an increase in CNTs number density, RG of PVB molecules 

slightly reduces. Due to repulsive interactions between CNTs-PVB, polymer molecules 

suffer from chain contractions. Moreover, three distinctive peaks were observed at higher 

polymer concentrations (e.g. PVB-4-CNTs and PVB-5-CNTs), and this could lead to 

CNTs rich and polymer rich regions in the polymer solutions, caused by uneven 

distribution of molecules. The small variations observed in chain dimensions and slight 

repulsions between CNTs and PVB chains lead to large morphological differences in 

many chain systems and eventually phase separations. Thus, the tendency of CNTs to 

agglomerate in PVB/DMF systems were explored by CNTs concentration profile 

analysis. Last 5 ns chunks of total 20ns dynamics of each equilibrated systems were 

analyzed to obtain CNTs concentration profiles in (100), (010) and (001) hkl planes. 

Figure 5 illustrates the CNT concentration profiles of PVB models in these 3 different 

planes respectively. In high concentration models, due to the abundance of the CNT 

molecules in the same cell-box dimensions, CNTs are standing more close to each other. 

In PVB models, even in high CNT concentration models, phase separation of CNT groups 

occurs (PVB-5-CNTs model at ca. 13 Å in (001) plane). Thus, it is clear that PVB 

polymers are not effective enough to disperse CNTs individually at atomistic level, they 

may require additional dispersing agents such as surfactants and/or dispersing method in 

wet fiber processing or electrohydrodynamic spinning process such as electrospinning.  
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Figure 5. CNTs Concentration profile of PVB models with different CNT concentrations in given planes. 

(a) (100), (b) (010) and (c) (001)

 

Dispersion of CNTs in P(St-co-GMA)/DMF systems 

 

The experimental observations pointed out that long-term stability of CNTs could be 

achieved by the manipulation of π-π interactions in P(St-co-GMA)/DMF systems 18. Thus 

as seen in Figure 6, P(St-co-GMA) models demonstrate different interaction mechanisms 

than PVB models. Figure 6(a) and Figure 6(b) exhibit RDF of CNTs-CNTs and CNTs-

P(St-co-GMA) at different CNTs concentrations, respectively. As seen in Figure 6(a), 
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there was no long range order for CNTs. A peak at around 12.5 Å was observed which 

would be due to neighboring walls of CNTs considering the diameter of individual CNTs 

which is approximately 8.14 Å. The tendency of the CNTs clustering together is not as 

strong as it is in PVB systems. Figure 6(b) addressed that polymer has affinity towards 

CNTs both in short range and long range distances. This difference might be based on the 

presence of aromatic groups in P(St-co-GMA), that provide strong short-range 

interactions with nanotube sidewalls. It can be also seen from Figure 6(b) that due to 

aromatic ring groups, P(St-co-GMA) molecules were positioned closer to CNTs sidewalls 

than PVB molecules. This further supports our prediction that there could be strong 

alignment of aromatic rings of P(St-co-GMA) parallel to the carbon nanotube surface [43, 

78]. As has been recently demonstrated with aromatic amino acids [78], the stacking of 

aromatic groups onto the SWNT surface allows for the dispersion of individual SWNTs. 

Moreover, the incorporation of aromatic groups decreases the ability of the peptides to 

self-associate, which was also revealed in atomic force microscope images. Intensive π-

π interaction between these polycyclic aromatic hydrocarbons and the external SWCNT 

surface were demonstrated by experimental findings [79, 80]. As in P(St-co-GMA) 

molecules, rigid-backbone polymers are able to form ordered molecular structures 

surrounding the nanotubes with n-fold symmetry, expressed by Nish et.al [81]. At longer 

distances beyond 12.5 Å, P(St-co-GMA) molecules still maintain their tendency towards 

CNTs as seen in Figure 6(b). This can be interpreted as the dispersing ability of styrene 

based polymers, which could be an effective agent in wet-fiber processing. Thus, it is 

predictable that isolation of individual CNTs could be achieved with a polymer design 

containing aromatic groups. RDFs of DMF-CNTs (Figure 6(c)), in presence of P(St-co-

GMA) displays almost same profile as in PVB models and at longer distances, DMF-

CNTs interactions are diminished while increasing CNTs concentrations whereas styrene 

based polymers are more soluble in DMF than PVB. The selective dispersion have been 

found to be strongly influenced by the polymer structures and solvent used [82].
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Figure 6. (a) RDF of CNTs-CNTs in PSTcoGMA-2-CNTs, PSTcoGMA-3-CNTs and PSTcoGMA-4-

CNTs and PSTcoGMA-5-CNTs models (b) RDF of CNTs-P(St-co-GMA) in PSTcoGMA-1-CNTs, 

PSTcoGMA-2-CNTs, PSTcoGMA-3-CNTs, PSTcoGMA-4-CNTs and PSTcoGMA-5-CNTs models (c) 

RDF of DMF-CNTs in PSTcoGMA-1-CNTs, PSTcoGMA-2-CNTs, PSTcoGMA-3-CNTs, PSTcoGMA-

4-CNTs and PSTcoGMA-5-CNTs models. 

 

 

Figure 7 displays RG of P(St-co-GMA) molecules at different CNT number densities. For 

better description, Gaussian fits of curves are given in Figure 7 while raw data are also 

provided in Figure S2. The mean peak value of RG for the P(St-co-GMA) molecule in 

absence of CNTs (e.g. PSTcoGMA-0-CNTs) was about 20Å whereas in PSTcoGMA-5-

CNTs model two distinctive peaks were observed, the mean value was shifted to 15.6Å. 

We observed that with an increase in CNTs concentration, RG of P(St-co-GMA) 

molecules slightly decreases, as in PVB models. Furthermore, the shift of RG in presence 

of CNTs was below 5 Å (from 20.0 to 15.6 Å) whereas the end to end distance of P(St-

co-GMA) was approximately 70 Å. In case of PVB, this dimensional change was about 

3 Å where the end to end distance of PVBs was around 50 Å. Therefore, we can conclude 

that PVB molecules have almost the same contraction value (%) as P(St-co-GMA) 

molecules. However, in case of P(St-co-GMA) systems, polymer molecules suffer more 

due to the π-π interactions between the aromatic rings of P(St-co-GMA) on their chains 

and not between the aromatic rings of P(St-co-GMA) and CNTs. Concentration profile 

of CNTs given in Figure 8 would also assist to understand these same-kind interactions. 

Unlike PVB models, P(St-co-GMA) models exhibited better dispersion state in high 
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CNTs loadings. Thus, no phase separation was observed in PSTcoGMA-4-CNTs and 

PSTcoGMA-5-CNTs models (Figure 8). This is further evidence of how that better 

dispersion of CNTs in the vicinity of P(St-co-GMA) molecules was achieved due to the 

increased π-π stacking with a strong orientation preference.   

 

14 16 18 20
0.0

0.5

1.0

1.5

2.0

PSTcoGMA-5-CNTs

PSTcoGMA-0-CNTs

PSTcoGMA-3-CNTs

PSTcoGMA-4-CNTs

PSTcoGMA-1-CNTs

PSTcoGMA-2-CNTs

RG(Å)

P
(Å

-1
)

 
Figure 7. Gaussian fits of RG of P(St-co-GMA) molecules in all equilibrated PSTcoGMA models. 
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Figure 8. CNTs Concentration profile of P(St-co-GMA) models with different CNT concentrations in given 

planes. (a) (100), (b) (010) and (c) (001). 

 

Conclusion 

 
In conclusion, local structures and conformational analysis in presence of CNTs are 

performed to provide insight into dispersing ability of PVB and P(St-co-GMA) molecules. 

It is seen that due to the π-π interactions between the aromatic rings of P(St-co-GMA) and 

CNTs, P(St-co-GMA) molecules were more effective in dispersing CNTs and/or 

preventing CNTs clusters than PVB molecules.  PVB-CNTs interactions influence the 
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degree of dispersion of the nanotubes and polymer reaggregation. Additional dispersing 

agents such as surfactants in wet fiber processing or electrohydrodynamic spinning process 

were required to form composite PVB fibers. We can conclude that polymers, which 

contain aromatic rings, are better candidates to disperse CNTs in wet fiber processing. 

Manipulating the π-π interactions between these aromatic rings and CNTs, would eliminate 

the need of dispersing agents in fiber forming.  
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